Solving Medium to Large Sized Euclidean Generalized Minimum Spanning Tree Problems

نویسنده

  • Diptesh Ghosh
چکیده

The generalized minimum spanning tree problem is a generalization of the minimum spanning tree problem. This network design problems finds several practical applications, especially when one considers the design of a large-capacity backbone network connecting several individual networks. In this paper we study the performance of six neighborhood search heuristics based on tabu search and variable neighborhood search on this problem domain. Our principal finding is that a tabu search heuristic almost always provides the best quality solution for small to medium sized instances within short execution times while variable neighborhood decomposition search provides the best quality solutions for most large instances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Heuristics for Large Instances of the Euclidean Bounded Diameter Minimum Spanning Tree Problem

Given a connected, undirected graph G = (V, E) on n = |V | vertices, an integer bound D ≥ 2 and non-zero edge weights associated with each edge e ∈ E, a bounded diameter minimum spanning tree (BDMST) on G is defined as a spanning tree T⊆ E on G of minimum edge cost w(T) =∑w(e), ∀ e∈ T and tree diameter no greater than D. The Euclidean BDMST Problem aims to find the minimum cost BDMST on graphs ...

متن کامل

Heuristic methods for solving two Generalized Network Problems

This thesis examines two combinatorial optimization problems: the Generalized Degree Constrained Minimum Spanning Tree Problem (d-GMSTP) and the Generalized Minimum Vertex Bi-connected Network Problem (GMVBCNP). Both problems are NPhard. Given a clustered graph where nodes are partitioned into clusters, the goal is to find a minimal cost subgraph containing exactly one node from each cluster an...

متن کامل

On Some Polynomial Solvable Cases of the Generalized Minimum Spanning Tree Problem

The Generalized Minimum Spanning Tree Problem denoted by GMST is a generalization of the well-known minimum spanning tree problem and belongs to the hard-core of the NP-hard problems. The paper focuses on some special cases when effective polynomial algorithms for solving the GMST problem can be constructed. 2000 Mathematics Subject Classification: 90C05, 90C25, 90C34.

متن کامل

An Approximation Scheme for the Generalized Geometric Minimum Spanning Tree Problem with Grid Clustering

This paper is concerned with a special case of the Generalized Minimum Spanning Tree Problem. The Generalized Minimum Spanning Tree Problem is defined on an undirected graph, where the vertex set is partitioned into clusters, and non-negative costs are associated with the edges. The problem is to find a tree of minimum cost containing exactly one vertex in each cluster. We consider a geometric ...

متن کامل

A Metaheuristic Algorithm for the Minimum Routing Cost Spanning Tree Problem

The routing cost of a spanning tree in a weighted and connected graph is defined as the total length of paths between all pairs of vertices. The objective of the minimum routing cost spanning tree problem is to find a spanning tree such that its routing cost is minimum. This is an NP-Hard problem that we present a GRASP with path-relinking metaheuristic algorithm for it. GRASP is a multi-start ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003